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Significance

Since the early Holocene, 
western and central Europe was 
inhabited by a genetically distinct 
group of hunter-gatherers. We 
generated different types of 
biomolecular data, including 
deep coverage complete genome 
sequencing, from human skeletal 
remains buried in the iconic sites 
of Téviec and Hoedic in Brittany, 
representing some of the last 
hunter-gatherers of western 
Europe. The data show that these 
last foragers were part of  
a network of people who 
maintained exogamic practices. 
These socio-cultural dynamics 
contributed to avoiding 
inbreeding. Some of the forager 
individuals overlapped in time 
with the arrival of Neolithic 
farmers to neighboring regions. 
However, we did not find any 
farmer-associated ancestry in the 
analyzed hunter-gatherers and 
the mate-exchanging networks 
appear to be exclusive for the 
foraging group.
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Since the early Holocene, western and central Europe was inhabited by a genetically dis-
tinct group of Western Hunter-Gatherers (WHGs). This group was eventually replaced 
and assimilated by the incoming Neolithic farmers. The western Atlantic façade was 
home to some of the last Mesolithic sites of mainland Europe, represented by the 
iconic open-air sites at Hoedic and Téviec in southern Brittany, France. These sites are 
known for the unusually well-preserved and rich burials. Genomic studies of Mesolithic 
European hunter-gatherers have been limited to single or a few individuals per site 
and our understanding of the social dynamics of the last Mesolithic hunter-gatherers 
of Europe and their interactions with incoming farmers is limited. We sequenced and 
analyzed the complete genomes of 10 individuals from the Late Mesolithic sites of 
Hoedic, Téviec, and Champigny, in France, four of which sequenced to between 23- 
and 8-times genome coverage. The analysis of genomic, chronological and dietary data 
revealed that the Late Mesolithic populations in Brittany maintained distinct social 
units within a network of exchanging mates. This resulted in low intra-group biological 
relatedness that prevented consanguineous mating, despite the small population size of 
the Late Mesolithic groups. We found no genetic ancestry from Neolithic farmers in the 
analyzed hunter-gatherers, even though some of them may have coexisted with the first 
farming groups in neighboring regions. Hence, contrary to previous conclusions based 
on stable isotope data from the same sites, the Late Mesolithic forager community was 
limited in mate-exchange to neighboring hunter-gatherer groups, to the exclusion of 
Neolithic farmers.

Mesolithic | genomics | palaeogenomics | foragers

The onset of the Holocene, ca. 11,700 y ago (1) brought amenable climate conditions 
that impacted the foragers of that time in Europe. This period is characterized by significant 
changes in socio-cultural practices, as evidenced by new settlement patterns, technology, 
subsistence, mortuary practices, and worldviews, which define the transition from the 
Paleolithic to the Mesolithic in archaeological terms (2). Paleogenomic studies of ancient 
human remains have shown that several genetically distinct groups existed across Europe 
during the Paleolithic (3, 4). In western Europe, an ancestry group associated with the 
Upper Paleolithic Magdalenian culture (ca. 20,000 to 14,000 cal B.P., e.g., represented 
by individual Goyet Q2 (3, 5), and referred to as the “Magdalenian” ancestry group) was 
predominant during the Last Glacial Maximum. This group was largely replaced by the 
so-called “Western European hunter-gatherer” (WHG) ancestry group (4, 6–8), during 
the early Holocene, except in the Iberian Peninsula and to some degree in southwestern 
France (4, 5, 9, 10).

For several millennia, the WHGs were the most common group across most of Europe, 
until the arrival of the Neolithic farmers (6–8). The period of coexistence of WHGs and 
Neolithic farmers is narrow in western Europe and the interactions between hunter-gatherers 
(HG) and incoming farming populations have been difficult to decipher, partly because 
the precise chronology of the last HGs has been challenging (11–13). In southern Brittany, 
the Mesolithic way of life seems to have ended around 6,750 cal B.P. (14, 15) with the 
earliest Neolithic sites in Brittany dating between 6,950 and 6,650 cal B.P. (16). 
Neolithization of northern Brittany of the region started ca. 6,850 cal B.P. (17), which is 
ca. 200 y later than in other regions in France, such as at the neighboring Normandy or 
in the Paris Basin (18).

It is evident in the archaeological record that the arrival of Neolithic populations changed 
long-established HG socio-cultural practices throughout Europe. In genetic terms, it is 
now clear that Neolithic populations assimilated HGs to some extent (10, 19–21). How 
this process occurred is unknown, partly because genetic data from some of the key Late 
Mesolithic sites are still missing. There is increasing evidence of regional or even local 
nuances of contact and mixture (21–23). For instance, in Sicily, at Grotta dell’Uzzo, there 
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are indications of interactions between farmers and HGs based on 
diet patterns (24). However, it remains unclear whether gene flow 
also occurred from farmers into extant Late Mesolithic populations 
(which has not yet been reported), a question that can only be 
answered by investigating the genomes of HGs living contempo-
rarily with farmers.

Genomic studies of ancient HGs have mainly focused on the 
demographic processes that shaped their patterns of genetic diver-
sity (e.g. refs. 4–7 and 10). Only a few studies have generated 
genomic datasets of HG social groups, for which multiple indi-
viduals with confirmed chronological and spatial coexistence are 
analyzed. Such datasets provide unique opportunities to study the 
social dynamics of HG societies (25). The shell middens of Hoedic 
and Téviec in southern Brittany, France, at the Atlantic façade of 
Europe, are among the most significant Mesolithic sites in France, 
due to the rich and unusually well-preserved large number of 
human burials which remain unparalleled in the region (26, 27). 
Together with the Late Mesolithic burial grounds of Portugal and 
southern Scandinavia (28, 29), Hoedic and Téviec bear important 
evidence about the life and death of the last hunter-gatherers in 
western Europe up to the Neolithic transition (11). To investigate 
the genetic ancestries and social dynamics of some of the last 
Mesolithic HGs in western Europe, we sequenced and analyzed 
the genomes of 10 Late Mesolithic individuals from Téviec and 
Hoedic in North-West France and Mont Saint-Pierre, Champigny 
in the North-East (Fig. 1), and integrated the new genomic evidence 
with previously published dietary data and new high-resolution 
chronological analysis.

Results

Chronology of the Burial Activity. We obtained reliable radiocarbon 
(14C) and stable isotope data of carbon (13C) and nitrogen (15N) for 
four of the sequenced individuals from Hoedic (hoe002, 004-006) 
and used previously published measurements for Téviec (tev001, 
003), Hoedic (hoe001), and Champigny (spt001) (Table 1 and 
Dataset S1). Two sequenced individuals (tev002, hoe003) remain 
undated due to difficulties in obtaining well-preserved collagen 
(SI Appendix, Supplementary Note 2 and Datasets S1 and S2). For 
a comprehensive chronological analysis, we integrated the dated 
individuals from the sequence dataset (Table 1) with all published 
radiocarbon dates from individuals not sampled for genetic analyses. 
Given the high trophic level of the studied individuals, indicating 
a substantial consumption of seafood, we corrected the C14 dates 
for a marine reservoir effect (SI Appendix, Supplementary Note 2.1). 
The revised chronology of the burial activity at Téviec and Hoedic 
(SI Appendix, Figs. S8 and S9) is in line with what was already 
known (11, 15) but further demonstrates that the later phases of 
burial activity at Hoedic [e.g., J(11)-hoe005, J(7)-hoe004, C-2(2)-
hoe001, C-3-hoe002, B(1)], ca. 7,200/7,100 to 6,650 cal B.P., 
may have overlapped in time with Early Neolithic farmers that 
settled in neighboring regions, and possibly in Brittany (Fig. 1 and 
SI Appendix, Fig. S9).

Graves with multiple burials are relatively common in Téviec and 
Hoedic. All three individuals from Téviec that were genomically 
analyzed were buried in the same grave (K) at various depths 
(SI Appendix, Supplementary Note 1). At Hoedic, we investigated 
grave J which contained one adult and a child [J(7)hoe004, 
J(11)-hoe005], as well as grave C with the remains of several chil-
dren (including C3-hoe002) and an adult [C2(2)-hoe001]. 
Radiocarbon data and each grave’s stratigraphic relationships indi-
cate that individuals buried in the same grave either coexisted in 
time or are from consecutive generations (SI Appendix, Supplementary 
Notes 1 and 2).

Marine Protein in Diet. The people buried in both Hoedic and 
Téviec show substantial consumption of seafood. Most of their 
protein intake was obtained from high trophic marine foods such 
as large fish, relative to low trophic level food, such as shellfish 
(SI  Appendix, Supplementary Note 2). Specifically, new and 
previously published data from Hoedic show that the human 
collagen samples display stable isotope values ranging between 
−15.1‰ and −13.0‰ (−13.9 ± 0.7‰, mean ± SD, n = 10) for 
carbon, and 13.9 to 15.5‰ (14.6 ± 0.5‰, n = 7) for nitrogen. 
These values indicate that the individuals buried at Hoedic 
obtained an exceptionally high proportion of their protein from 
fished marine foods (57 ± 9% to 78 ± 9%), higher than most 
reported trophic levels for historically recorded/prehistoric HGs (30). 
The individuals buried at Téviec also show high consumption of 
marine foods (38 ± 9% to 60 ± 13%) but with a considerably 
higher consumption of protein from terrestrial sources relative to 
Hoedic. Available measurements of carbon isotope values range 
between −16.6‰ and −14.6‰ (−15.5 ± 0.6‰, n = 8), and 11.7 
to 15.2‰ (13.4 ± 1.8‰, n = 3) for nitrogen, indicating the 
consumption of a mixture of marine and terrestrial foods at Téviec.

At both sites, the δ13C (Fig. 2) and δ15N values fluctuate over 
time and do not follow any particular tendency (Dataset S1). 
While there are no apparent chronological or age and sex biases in 
relation to the sources of protein consumed, we observe some 
intra-site variation. Notably, at Hoedic, the woman and the 4- to 
7-y-old girl buried together in grave J (hoe004 and hoe005) display 
a more balanced consumption of marine and terrestrial foods (ca. 
56 ± 9%) in contrast with the predominantly marine diets of other 
individuals buried at the site, including those buried around the 
same time period in grave C (hoe001 and hoe002, ca. 69 ± 9%).

Ancient DNA Data. We generated whole-genome sequencing 
data from uracil-DNA glycosylase (UDG) treated libraries for 
10 individuals from three Late Mesolithic sites in modern-day 
France (Fig. 1, Table 1 and SI Appendix, Table S1), after initial 
investigation of post-mortem damage on non-UDG treated 
libraries and fragmentation typical of ancient DNA (aDNA). 
Mitochondrial and X chromosome contamination estimates 
were consistently very low (<3%, Table  1). DNA preservation 
was exceptional for most individuals, enabling an average (across 
10 individuals) genomic sequencing depth of 8.25× (ranging 
from 0.03× to 22.88×, Table  1). We compared the generated 
genome sequences with previously published genetic data from 
relevant ancient individuals (Dataset S5) as well as present-day 
west Eurasian populations (from the Simons Genome Diversity 
Project, SGDP) (31) and the Human Origins panel (32).

Genetic Similarities to Contemporaneous Groups. The Late 
Mesolithic HGs from modern-day France were genetically very 
similar to other WHGs (Figs. 3A and 4), suggesting a long-term 
and geographically stable population. The mitochondrial and Y 
chromosome haplogroups are, respectively, U5 and I2a1 (Table 1), 
which are typical for Late Mesolithic WHGs (8, 11, 12). Moreover, 
the individuals buried at Téviec and Hoedic are at the northern 
end of the cline of two late-Pleistocene lineages—Magdalenian-
associated and WHG Villabruna-related ancestry—previously 
observed for other West Atlantic European Mesolithic HGs 
(SI Appendix, Supplementary Note 4). Despite being contemporary 
to the first farmers in northwestern France, none of the individuals 
of Téviec and Hoedic show evidence of admixture with Neolithic 
groups (Fig.  3A and SI  Appendix, Supplementary Note 5). The 
individuals at Téviec and Hoedic show greater genetic similarity 
among themselves compared to other WHGs from modern-day 
France, such as Champigny (stp001, Fig. 4).D
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Phenotypically, we find some diversity during the Late Mesolithic 
in France. We observe that while most individuals carry the dark 
skin and blue eyes characteristic of WHGs, D(4)-hoe003 and 
J(11)-hoe005 likely had pale to intermediate skin pigmentation 
(SI Appendix, Table S11).

Social Structure and Biological Relatedness. To gain insight into 
effective population sizes and levels of consanguinity, we computed 
runs of homozygosity (RoH) for the four higher-coverage Late 
Mesolithic HGs (stp001, hoe003, hoe005, and tev003) and a panel 
of comparative ancient and modern-day individuals. We observe 

M

LK
J

H

A

B

C

D F

PA ?

M

E
K

H

I D

L

B

CA

0 10 m

1931

1932

1933

1934

1934

Not excavated

Excavation limitsTéviec grave (aDNA) 
Grave (not analysed) 

Current landmass Current sea (high tide)Cenotaph

Hearth

TÉVIECHOEDIC 0 10 m

A

B

Hoedic graves (aDNA) 

Fig. 1. Location of individuals and graves discussed in the text. (A) Map indicating the location of Paleolithic and Mesolithic sites used for comparative genetic 
analysis, highlighting the location of the sites investigated in this study and the Neolithic occupation, for which there is no genetic data available. (B) Schematic 
representation of the excavated graves in the shell middens of Téviec and Hoedic based on the field map by M. Péquart and S.-J. Péquart (26, 27).
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long and frequent RoH in Brittany’s HGs and stp001, consistent 
with a small effective population size. Contrary to the expectations 
from their geographical and temporal isolation, the Late Mesolithic 
French HGs show similar, but slightly less RoH than those observed 
in other high coverage genomes from WHGs, such as Loschbour 
[ca. 8,000 y old, Luxembourg (6)] and SRA62 [ca. 8,000 y old, 
Ireland (33)]. Interestingly, we find no evidence of consanguinity 
in Mesolithic Brittany [such as an excess of long RoH fragments 
instead of a proportional increase in the total length of the sum of 
RoH and the number of RoH segments (Fig. 3B)].

Given their broad contemporaneity (SI Appendix, Figs. S8 and S9), 
we investigated the degree of biological relatedness among the Téviec 
and Hoedic individuals, with methods that allow relationship infer-
ence up to the second and fourth degree for aDNA data (34–36). 
The individuals of Mesolithic Brittany are predominantly unrelated, 
and first-degree kinship was not identified (Fig. 5 and SI Appendix, 

Supplementary Note 6). Within Téviec, where all analyzed individuals 
come from the same grave, two pairs of individuals (tev001-tev003 
and tev002-tev003) were inferred to be second- or third-degree rel-
atives (Fig. 5 and SI Appendix, Supplementary Note 6). These familial 
relationships can also be seen in the tighter genetic clustering within 
the site of Téviec (Fig. 4). All other pairs of individuals have 
third-degree or higher kin relationships, even those buried together. 
Notably, the adult female (hoe004) and 4- to 7-y-old girl (hoe005) 
buried together in grave J were biologically unrelated, in line with the 
different phenotypic appearances.

Discussion

The dynamics of social interactions between past HG populations 
are poorly studied genetically, in part due to the scarcity of human 
remains and, consequently, DNA sequence data. To address this, 

Table 1. Mesolithic individuals sequenced in this study
aDNA 
lab ID Burial ID

Archaeological 
site Age

14C cal B.P. 
(95.4%) δ13C (‰) δ15 N (‰)

Genome 
coverage

Biol. 
sex

mt  
haplo-group

Y chr.  
haplo-group

Contamina-
tion (X chr.)

Contamina-
tion (mt)

stp001 F528 Mont S:t 
Pierre 

Champigny

Adult 8,300 to 8,015 n/a n/a 17.53 XY U5b2 I2a1 (L460) 0.009 0.001

tev001 K1(8) Téviec Adult 7,320 to 7,065 −15.6 
AMS

n/a 2.16 XY U5b I2a1 (L460) 0.011 0.002

tev002 K3 (9) Téviec Adult n/a n/a n/a 0.21 XX U5b – – 0.019

tev003 K6(16) Téviec Adult 7,425 to 7,180 −15.4 13.4 22.43 XY U5b1 I2a1 (L460) 0.009 0.0001

hoe001 C-2 (2) Hoedic Adult 7,160 to 6,760 −14.0 14.2 0.20 XX U5b – – 0.009

hoe002 C-3 Hoedic Child 2 
to 7 y

7,155 to 6,790 −13.6 14.7 3.82 XY U5b I2a1 (L460) 0.007 0.0007

hoe003 D (4) Hoedic Adult n/a n/a n/a 22.87 XY U5b2b I2a1 (L460) 0.026 0.002

hoe004 J (7) Hoedic Adult 7,240 to 6,885 −15.1 15.5 4.92 XX U5b1 – – 0.0006

hoe005 J (11) Hoedic Child 3 
to 7 y

7,260 to 6,950 −14.9 14.6 8.32 XX U5a2 – – 0.001

hoe006 L (10) Hoedic Adult 7,910 to 7,575 −13.0 15.1 0.03 XX U5a2 – – 0.023

Samples were collected from the bone remains of 10 individuals from three archaeological sites in France. See SI Appendix for detailed information on each sample and measurements. 
The following abbreviations are used in the table; Years (y), mitochondria (mt), chromosome (chr.), biological (biol.).

Fig. 2. Marine protein estimate based on all available δ13Ccollagen measured on human bone samples from Hoedic and Téviec, modeled using FRUITS v. 3.1. 
Individuals are sorted chronologically within each site (older on the left side). Samples with genomic data produced in this study are shaded in blue (Hoedic) and 
green (Téviec). The other individuals were not sampled for genetic analysis, but their previously published isotopes are used here for comparative background (30).D
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we generated whole-genome data of Late Mesolithic HGs and 
confirmed with new calibrated radiocarbon dates on human bone 
collagen that the individuals buried in Téviec and Hoedic were 
not only in spatial proximity but were also largely contempora-
neous, forming a biological population, possibly substructured 
into different groups or clans. This provided an unprecedented 
opportunity to investigate Mesolithic HG demographic structure 
and socio-cultural dynamics, by integrating genomic, radiocarbon, 
stable isotopes, and archaeological data, even if we consider archae-
ological preservation biases and possible selection of individuals 
for burial.

While our genetic analysis confirms that the people buried in 
Téviec and Hoedic were genetically more related to each other 
than to other WHGs, stable isotopes show relatively distinct sub-
sistence strategies at each site [Fig. 2, (11)]. The high consumption 
of seafood at both sites indicates that both groups relied heavily 

on exploiting marine resources. This is not surprising given that 
both sites are located within a small region on the coast and that 
HG diets are systematically related to environmental conditions 
(30), which were comparable in Téviec and Hoedic, implying 
similar food resource availability (14). However, each group had 
different resource exploitation preferences. In the Late Mesolithic, 
the sea levels were 5 to 15 m lower than today, and while the 
present-day island of Hoedic is the result of the splitting up of a 
larger island, Téviec was on the seashore (37, 38). This possibly 
granted easier access to terrestrial foods to the foragers of Téviec. 
Dietary data on historically recorded HG populations indicate 
that very few groups worldwide depend on marine resources for 
more than 50% of their diet (e.g., Alsea, Haida, Makah, and 
Inuit), possibly due to the technological up-front cost associated 
with the intensive use of aquatic resources, including boats, nets, 
traps, hooks, and lines (30). The extremely high intake of marine 
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protein noted among those buried in Hoedic indicates that fishing 
was their main subsistence activity, while the individuals buried 
in Téviec probably spent relatively more time hunting and gath-
ering terrestrial foods (11). The specific dietary patterns of each 
site indicate that they lived as separate social units.

We observe low intra-site genetic relatedness, suggesting that 
HGs from the Mesolithic in Brittany had social systems in place 
that would avoid inbreeding among immediate relatives, similar 
to what has been observed some Late Upper Paleolithic HGs (25). 
This pattern is in line with historically recorded HG populations, 
for which residential groups have less than 10% primary kin rel-
atives (39, 40). Interestingly, and contrary to expectation, indi-
viduals buried together did not have close biological kin 
relationships. An exception to this pattern is the individual buried 
at the bottom of grave K in Téviec [K6(16)-tev003], who had 
closer biological kin links to at least two (sampled of a total of 
five) of the individuals buried above him, while these were not 
closely related with each other. This finding corroborates the 
importance and singularity that K6(16)-tev003 could have had 
based on the arrangement of the grave and associated archaeolog-
ical material. Moreover, osteological analysis revealed two micro-
lithic armatures, likely from a projectile weapon, punched in the 
sixth and eleventh dorsal vertebrae, the first of which may have 
resulted in immediate death by severing the aorta (1). His man-
dible also bore an old, well-healed fracture, which has been sug-
gested as evidence of a lifestyle marked by a certain violence (26).

In line with the biological relatedness analysis, which shows 
that the social units of Téviec and Hoedic were broadly not based 
on close biological relatives, the RoH patterns show increased 
background relatedness due to small population sizes instead of 
direct consanguinity (41, 42). This observation is similar to other 
Late Mesolithic populations in western Europe and the phenom-
enon seems to be more pronounced in western Europe [Fig. 3, 
(4)] compared to eastern, northern, and southern Europe [Fig. 3, 
(4, 24, 43)]. In modern-day populations, inbreeding is more prev-
alent in areas where consanguinity is favored culturally, such as 

parts of West and South Asia, but it also occurs as a consequence 
of small population size and endogamy, even if there is random 
mating (41). The people of Téviec and Hoedic seem to have imple-
mented strategies to avoid consanguineous mating, such as 
exchanges between groups. The wider Mesolithic landscape in 
Brittany could have facilitated mobility, contact, and exchange of 
mates between small HG groups.

Exogamic practices have been previously proposed for the Late 
Mesolithic sites in Brittany based on dietary isotopes. Schulting 
and Richards’ (11) isotopic analysis of a large number of indi-
viduals indicated that the diet of younger women buried in 
Téviec and Hoedic tended to be more reliant on terrestrial pro-
tein than the sites’ average, shifting toward the group’s 
marine-terrestrial values at older ages (11). This dietary shift 
suggested a patrilocal exogamic behavior, where women from 
other more inland groups migrated into these coastal commu-
nities. The possible chronological overlap between these last HG 
communities and the first Neolithic groups in the neighboring 
regions gave rise to the idea that young women at Hoedic and 
Téviec, given their more inland diet, were moving in from 
Neolithic farmer groups (11). We now confirm the chronological 
overlap at the later phases of burial activity in Hoedic and show 
that these females (illustrated in this study by hoe004 and 
hoe005) did not come from Neolithic populations, as they are 
within the HG genetic variation and show no traces of Neolithic 
farmer-related ancestry (Figs. 3 and 4). While the dietary profile 
of this woman and child buried in grave J at Hoedic differs from 
the average observed at the site and aligns with that of Téviec, 
their origin remains unknown, but a possible common foreign 
origin could explain their joint burial without a kin relationship. 
Ethnographic data show that among human societies and espe-
cially foragers, child caretaking is often multiple. The density 
within foragers’ settlements is frequently higher than in farmers’, 
and thus multiple members of the group participate in the 
upbringing of children (44). Biological unrelatedness in graves 
with adult female-child is not uncommon in other contexts and 

READ kinship estimates
Av

er
ag

e 
pa

irw
is

e 
P0

 (±
 2

SE
)

0.16

0.18

0.20

0.22

2nd degree (i.e. nephew/niece−uncle/aunt, grandparent−grandchild or half−siblings)

1st degree (parent−offspring or siblings)

te
v0

01
−t

ev
00

3

te
v0

02
−t

ev
00

3

ho
e0

01
−h

oe
00

2

te
v0

01
−t

ev
00

2

ho
e0

04
−h

oe
00

5

ho
e0

02
−h

oe
00

3

ho
e0

01
−h

oe
00

3

ho
e0

01
−h

oe
00

4

ho
e0

02
−t

ev
00

2

ho
e0

01
−t

ev
00

2

ho
e0

01
−t

ev
00

3

ho
e0

03
−h

oe
00

5

ho
e0

03
−t

ev
00

2

ho
e0

03
−t

ev
00

1

ho
e0

01
−t

ev
00

1

ho
e0

04
−t

ev
00

2

ho
e0

02
−h

oe
00

5

ho
e0

05
−t

ev
00

3

ho
e0

05
−t

ev
00

2

ho
e0

03
−h

oe
00

4

ho
e0

03
−t

ev
00

3

ho
e0

05
−t

ev
00

1

ho
e0

01
−h

oe
00

5

ho
e0

02
−t

ev
00

1

ho
e0

04
−t

ev
00

1

ho
e0

02
−t

ev
00

3

ho
e0

02
−h

oe
00

4

ho
e0

04
−t

ev
00

3

Fig. 5. Biological kinship analysis results using READ (34). Individuals buried in the same grave or in very close proximity are highlighted in red (all individuals 
sampled from Téviec were buried in the same grave; hoe004 and hoe005 correspond to the simultaneous burial of an adult female and a child placed on top 
of the adult).

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 9
0.

26
.1

10
.1

48
 o

n 
Ju

ly
 7

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
90

.2
6.

11
0.

14
8.



PNAS  2024  Vol. 121  No. 10  e2310545121� https://doi.org/10.1073/pnas.2310545121   7 of 9

periods (45) and while these issues are not universal across soci-
eties, our findings support that social bonds (kinship) were estab-
lished beyond biological relatedness and that some social 
significance was attributed to such links, postmortem.

The lack of farmer-related ancestry in the HGs analyzed, par-
ticularly those from the later phase at Hoedic, is elucidating of 
the dynamics of interaction between these populations and ulti-
mately the fate of Mesolithic HG populations. Across Europe, the 
directional gene flow from HG to farmer populations has been 
demonstrated by the consistent finding of ancestry associated with 
HGs in farming contexts. In France, it has been shown that Early 
Neolithic farmers carried Late Pleistocene hunter-gatherer line-
ages, suggesting multiple events of admixture, before and after the 
arrival of Neolithic groups in France (10, 21). Moreover, evidence 
of delayed HG-farmer admixture in Southern France, occurring 
only several generations after the initial arrival of farming together 
with the development of local pottery traditions, has been inter-
preted as local adoption of aspects of the Neolithic package by 
HG groups (21, 46, 47). In Sicily, an individual with HG ancestry 
showed a diet-signal similar to Sicilian Early Neolithic farmers, 
raising the idea of interactions between groups (24). However, 
genetic data of HGs that coexisted with farmers remains rare. 
Here, we confirm that some of the last burial events at Hoedic 
(SI Appendix, Fig. S9) are contemporary with neighboring farmer 
sites in Brittany, such as Pluvignon, Kervouric, and Kervouyec 
(SI Appendix, Supplementary Note 5.1). We observe that this HG 
population remained unadmixed throughout a time transect that 
overlaps the arrival of Neolithic people to the region. In spite of 
the lack of genetic data from early farmers in Brittany, farmers 
carried HG-related ancestry in other regions of France (10, 21). 
Taken together, these results show that gene flow between foragers 
and farmers was typically unidirectional and resulted from indi-
viduals with HG ancestry joining farmer groups and not the other 
way around. By sampling HG groups that overlap chronologically 
with early farmers instead of HG groups that predated the arrival 
of Neolithic farmers, we exclude sampling bias as an explanation 
for the absence of admixed farmer-related ancestry. While such 
pattern of interaction between HG and farmer groups is clear in 
Brittany, gene-flow in the opposite direction could have happened 
in other contexts and areas.

Conclusion

Our revision of the chronology of the burial activity at Téviec and 
Hoedic provides a more robust interpretation for the end of the 
Mesolithic in Brittany, placing Hoedic as the last known Mesolithic 
site in France. The individuals of Téviec and Hoedic lived on the 
very edge of the geographical and chronological distribution of 
the western European Mesolithic HG groups. These circumstances 
could have cornered these groups into severe genetic drift due to 
extremely small population size, leaving no alternative to consan-
guinity and its deleterious consequences. By integrating genetic, 
radiocarbon and stable isotopes results, we observe that these 
groups implemented strategies to avoid consanguinity, pointing 
to the maintenance of intermarriage networks between different 
HG subgroups. These practices were likely active all the way till 
the end of the existence of these HG groups, when they were 
finally assimilated or replaced by the Neolithic farmers. Such strat-
egies could be rooted in HG practices since the Early Upper 
Paleolithic, when exogamy and regular exchanges between groups 
seem to have avoided consanguinity (25). By combining genetic 
and dietary analyses, we uncover the complexity of hunter-gatherer 
socio-cultural systems, which are also expressed in their funerary 
practices.

Materials and Methods

Archaeological Material. The Téviec and Hoedic individuals were sampled 
in accordance with a permit (HDL.EF.2017.201) issued by Henry de Lumley, 
director of the Institut de Paléontologie Humaine, Fondation Albert Ier, Prince 
de Monaco, in Paris. Mont Saint-Pierre, Champigny was sampled in agreement 
with the Service archéologique de la Communauté Urbaine du Grand Reims, as 
authorized by Nicolas Garmond, responsible for the archaeological excavation 
conducted in 2017.

Radiocarbon and Stable Isotopes of Carbon and Nitrogen. We used previ-
ously published and newly produced measurements of 14C and stable isotope 
of carbon (13C) and nitrogen (15N) on human bone collagen and carried out a 
comprehensive evaluation of all measurements to evaluate reliability, resulting 
in the rejection of several measurements mostly due to poor preservation of bone 
collagen. In some cases, we tested the reliability of the measurements by process-
ing multiple samples from the same bone in different radiocarbon laboratories 
(Uppsala, Oxford) (SI Appendix, Supplementary Note 2 and Tables S1 and S2).

We employed a Bayesian chronological model implemented within the soft-
ware package OxCal v.4.4 to estimate the lifetime of each investigated individual 
which included a dietary correction for marine radiocarbon reservoir effect using 
FRUITS software (48, 49) (SI Appendix, Supplementary Note 2).

Calendar ages are reported as “cal B.P.” (B.P., where Present is 1950 CE). All 
calibrated ranges are given at 95.4% probability and rounded to the nearest 5 y, 
since the modeled results vary from run to run.

Ancient DNA. Genomic data were generated in dedicated aDNA facilities at the 
Human Evolution Laboratory, Uppsala University following a similar procedure 
as in ref. 50. DNA was extracted, using adapted versions of refs. 51 and 52, from 
bone pieces from the inner part of the petrous bone and from tooth roots (53–55). 
DNA extracts were then converted to double-stranded Illumina libraries. A portion 
of each sample’s first extract was used to build sequencing libraries to observe 
deamination and fragment size typical of post-mortem DNA damage (56). The 
following double-stranded libraries were built using USER enzyme to remove 
deamination. Libraries were amplified with a unique indexed primer (57). After 
quality control, libraries were pooled and whole-genome shotgun sequenced on 
Illumina HiSeq X (Téviec and Hoedic samples) or on NovaSeq 6000 at the SNP & 
SEQ Technology Platform in Uppsala.

After sequence demultiplexing, forward and reverse paired-end reads were 
trimmed and merged when an overlap of at least 11 bp was found. Merged reads 
were mapped against the human reference genome using BWA aln 0.7.13 (58). 
Fragments with identical start and end positions were collapsed into consensus 
sequences. All reads shorter than 35 bp, with >10% mismatches to the reference 
genome or a mapping quality <30 were removed. For each library, we merged 
bam files resulting from all resequencing rounds using samtools merge v1.5. 
Data from all USER-treated libraries were merged per individual.

We used the method described in ref. 59 for biological sex determination. 
Contamination was estimated based on contradicting signals in the mitochon-
dria (60) and for individuals identified as males, in the X chromosome (61). 
Mitochondrial haplogroup was assigned using Haplogrep v. 2.1.16 (62) and 
Phylotree 17. Y chromosome haplogroup was ascertained on informative SNP 
positions from Phylotree (version 9 Mar 2016) or ISOGG (v.11, April 2016) with 
samtools mpileup v1.3.

Two pseudo-haploid datasets were generated by randomly drawing one 
read per SNP from the newly generated ancient data and previously published 
ancient individuals from relevant populations: the 1,240 k SNP panel (3), merged 
with modern populations from the Simons Genome Diversity Panel (31) and 
the Human Origins [HO (32)] panel. For high coverage sequenced individuals, 
we performed diploid calls of transversion sites that are enriched in the Yoruba 
population of the 1000 Genome Panel (KGP), phase 3 data.

PCA was performed using smartPCA from the EIGENSOFT package v. 7.2.1 (63) 
by projecting the ancient individuals over the principal components computed on 
modern West Eurasian individuals from HO dataset using “lsqproject.” f-statistics 
were performed with POPSTATS (64) and SEs calculated with weighted block jack-
knife. We explored one- and two-source qpAdm models using Admixtools2, with 
Loschbour and GoyetQ2 as sources and with the following reference set: Mota, 
Ust_Ishim, MA1, ko1, GoyetQ116, MbutiPygmy, Papuan, Onge, Han, Karitiana, 
Natufian (and Anatolia Neolithic for farmer admixture modeling). Genetic kinship D
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between all pseudo-haplodized Téviec-Hoedic samples, except hoe006 (excluded 
due to too low coverage), was analyzed with READ (34), using default normaliza-
tion method, KIN (36), and correctKin (35).

Runs of homozygosity were estimated for a diploid dataset, for which ancient 
sample VCF files were subset to transversion sites enriched in the Yoruba pop-
ulation of the 1000 Genome Panel (KGP), phase 3 data, with the --homozyg 
command in PLINK (65). Pigmentation phenotypes for high-coverage ancient 
samples were estimated with the HIrisPlex-S system (66). Detailed descriptions 
of the ancient DNA wet lab, bioinformatics, and Population genetic analysis pro-
cedures available in SI Appendix, Supplementary Note 3.

Data, Materials, and Software Availability. Genome Sequence data from 
prehistoric human remains data have been deposited in European Nucleotide 
Archive (https://www.ebi.ac.uk/ena/browser/home, PRJEB71770) (67).
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